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On the one hand,  the greatest part of the equi- 
intensity curves in Fig. 4 and the TCD curves in Fig. 
3 are measured in regions with q >  1/Ro. Here (3), 
which the calculations are based on, is never valid, 
and the angular distribution of diffuse scattering 
should be changed. On the other hand, since the 
defects are very large, surface relaxation of the dis- 
placement fields and dynamical effects of X-ray 
diffraction will be of importance. One disadvantage 
of this method is the domination of the diffuse scatter- 
ing caused by the larger defects in the case of a 
mixture of defects of different size. In the case 
described the small precipitates, observed by TEM, 
were not detectable by X-ray measurements. 

Nevertheless, the results presented show that it is 
possible to characterize defects even up to 1 Ixm in 
size by the non-destructive method of X-ray diffuse 
scattering with TCD and by calculations based on 
the simple theory of Huang scattering. 

The authors wish to thank E. Bugiel for the TEM 
results obtained at the HVEM of the IFE Halle and 
Dr C. Becker, Dr R. M. Imamov and Dr A. A. 
Zavyalova for their interest in the work, helpful dis- 
cussions and for carefully reading the manuscript. 
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Abstract 
Three-crystal X-ray diffractometry (TCD) in grazing 
Bragg-Laue geometry has been experimentally real- 
ized for the first time. Theoretical simulations for the 
angular position and intensity of the main peak and 
the pseudopeak on TCD spectra have been obtained. 
It was established that TCD in grazing Bragg-Laue 
geometry has the following peculiarities: (1) the 
angular position and intensity of the main peak on 
the spectra depend on the sign of the deviation angle; 
(2) the main peak vanishes completely at negative 
deviation angles reaching the critical value; (3) the 
intensity of the main peak in grazing Bragg-Laue 
geometry is increased approximately by a factor of 
102 (compared to symmetrical Bragg diffraction 
geometry). The above peculiarities were predicted 
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theoretically and confirmed by experimental studies 
on ideal Si crystals. 

Introduction 
The method of three-crystal diffractometry (TCD) for 
the analysis of the angular distribution of diffracted 
X-rays (Eisenberger, Alexandropoulos & Platzman, 
1972; Larson & Schmatz, 1974, 1980; Haubold & 
Martinsen, 1978; Iida & Kohra, 1979; Iida, 1979; 
Afanas'ev, Koval'chuk, Lobanovich, Imamov, Alek- 
sandrov & Melkonyan, 1981; Zaumseil & Winter, 
1982) is an effective method for investigating distor- 
tions in a crystal, in particular in its subsurface layers. 
TCD was traditionally used to measure diffuse scat- 
tering due to the defects of the crystal lattice (Larson 
& Schmatz, 1974, 1980; Ehrhart, 1978; Haubold & 
Martinsen, 1978; Iida & Kohra, 1979; Iida, 1979; 
Zaumseil & Winter, 1982). Recently some authors 
(Afanas'ev, Koval'chuk, Lobanovich, lmamov, 
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Aleksandrov & Melkonyan, 1981; Afanas'ev, Alek- 
sandrov & Melkonyan, 1981 ; Afanas'ev, Aleksandrov, 
Imamov, Lomov & Zavyalova, 1983, 1984; Yakimov, 
Chaplanov, Afanas'ev, Aleksandrov, Imamov & 
Lomov, 1984) have shown theoretically and experi- 
mentally the possibility of obtaining important infor- 
mation on the structural perfection of subsurface 
layers from the angular dependence of the parameters 
of the main peak and pseudopeaks. The papers 
(Afanas'ev et  al., 1983, 1984; Yakimov et al., 1984) 
report a high sensitivity of the TCD method, which 
allows damaged layers with thicknesses of the order 
of 1 nm to be observed. 

The diffraction arrangement, shown in Fig. 1, is 
very convenient for investigating thin subsurface 
layers. In this geometry X-rays fall on a crystal at 
grazing angle q0o and are diffracted by a lattice plane 
with its normal vector making a small angle of dis- 
orientation I~1. Depending on q~o, either the diffrac- 
tion in Laue geometry (~o > 21~1 sin 0~) or in Bragg 
geometry (q~o < 21~1 sin 0B) can be realized (Aleksan- 
drov, Afanas'ev & Stepanov, 1984). 

The peculiarities of Bragg-Laue diffraction in a 
two-crystal arrangement with a simultaneous analysis 
of the angular dependence of the photoelectron yield 
were investigated in previous papers (Afanas'ev, 
Imamov, Maslov & Pashaev, 1983, 1984). In the case 
of diffraction in the Bragg geometry we have a large 
reflection coefficient (of the order of unity), and, 
therefore, a possibility arises for measuring TCD 
curves at large deviation from the exact Bragg posi- 
tion. Diffraction at grazing angles of incidence of 
X-rays ensures a small extinction depth, so that it 
permits the investigation of thinner layers of crystals. 

A TCD investigation in this geometry has been 
performed for the first time, and the present paper is 
devoted to finding out the basic physical features of 
the diffraction process. The most important 
peculiarity of diffraction in this arrangement consists 
in the fact that at small deviations from the Bragg 
condition the exit angle of diffracted rays ~h changes 
significantly. The change of deviation angle a by 
several seconds changes qbh by several degrees, which 
can influence significantly the diffraction geometry. 
Moreover, at such deviations from the Bragg condi- 
tion, regardless of the initial geometry of diffraction, 

! 02 J 

X-RAY ~ ~ ,  

! ,, ~o + ~ =2~o sin 0a 

Fig. 1. The ar rangement  of  the T C D  method in the grazing Bragg- 
Laue geometry.  

diffracted waves directed both into the crystal and 
outward from it are always formed. This circumstance 
compelled us to define the given diffraction arrange- 
ment as the case of grazing Bragg-Laue diffraction. 
Here rather important dependences of the position 
and intensity of the main peak on a are observed. 

The diffraction at grazing angles was used pre- 
viously by several workers. In works on the structure 
studies of monolayers of adsorbed atoms and phase 
transitions in them (Birgenvau, Hammous, Heiney & 
Stephaus, 1980; Nielsen, Als-Nielsen, Bohr & 
McTague, 1981), grazing angles were necessary to 
lower the background due to X-rays scattered from 
the substrate. Marra, Eisenberger & Cho (1979) sug- 
gested an arrangement in which specular reflection 
occurred simultaneously with diffraction. Under these 
conditions it became possible to diminish still more 
the background due to the substrate. This~jdea was 
later used in studies on the reconstruction of Ge 
surfaces (Eisenberger & Marra, 1981 ) and Au surfaces 
(Robinson, 1983) as well as in studies on melting 
processes of Pb layers on Cu surfaces (Marra, Fuoss 
& Eisenberger, 1982), although the use of specular 
reflection is not that critical for high-power X-ray 
sources. In our previous paper (Afanas'ev & 
Melkonyan, 1983), a correlation was found between 
the deviation angle a and the exit angle (J~h of diffrac- 
ted waves, which allows a considerable simplification 
of the experiments in which both the Bragg diffraction 
and specular reflection took place (Golovin & 
Imamov, 1983a, b). 

In the present study the specular reflection 
phenomenon is not used. Diffraction in the Bragg 
geometry is realized owing to small disorientation ~o 
(~o<0) (of the order of several degrees) and the 
deviation from the Bragg angle. Here angles @o and 
@h along with ~o have the values of several degrees. 
This fact changes qualitatively the experiment. Its 
realization becomes much simpler, allowing the thin- 
nest layers on the crystal surface to be studied using 
conventional X-ray sources. 

Theory 
Let us consider X-ray diffraction in' the geometry 
shown in Fig. 1. Depending on the angles of incidence 
of X-rays on the crystal (go and 0B) the diffracted 
wave can propagate either outward from the crystal 
or inward. Sometimes both waves are formed. This 
takes place when the angle ~0 is comparable with 
the critical angle of specular reflection ~ ,  which for 
a Si crystal is lY, and for Ge and GaAs crystals ---18'. 
In the present study we shall consider only the case 
when the disorientation angle I~t is much larger than 
• ~, so that either the incident or the diffracted wave 
makes an angle with the surface that is much larger 
than the angle of specular reflection. The case with 
angles @o, I¢1 < @c requires not only more compli- 
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cated calculations but also experimental devices of 
higher precision. 

If X-rays fall on the studied crystal at an exact 
Bragg angle, when 02 = 0 (Fig. 1) 

(a¢l-+-K2)2- ~¢2- -2(s in  OB)02=O, (1) O~= 2 
XI 

then diffraction in the Laue geometry is realized at 
grazing angles 

~o>1~1, where gt=2q~sin0a (2) 

and in the Bragg geometry at angles 

¢'o< I'el. (3) 

Here the exit angle for the diffracted wave 

~hlot=O ~ = Iq, I -  (4) 
At a deviation from the exact Bragg angle, a @ 0, the 
angle I~) h changes according to the equation (see 
Afanas'ev & Melkonyan, 1983): 

~ = (~o)2_a .  (5) 

The. change of angle a by several minutes corre- 
sponds to the change of qbh by, several degrees. As a 
result of this, it is not only the diffraction geometry 
that can change from the Laue case to the Bragg case 
and vice versa, but also the asymmetry factor /3 = 
~o/~h will change within the same geometry with 
change in parameters. For instance, at a > (q b°) 2 
diffraction scattering does not occur, nevertheless, 
diffraction processes cause a significant change of 
X-ray field near the surface, which can influence the 
yield of secondary radiation (fluorescence, photoelec- 
trons). 

In the TCD method the specimen is fixed at a 
certain position and the angular distribution of 
diffracted X-rays is studied by makinguse of the third 
analyzer crystal. The spectrum usually contains three 
peaks: the main peak, the pseudopeak and the diffuse 
peak [see Fig. 2 and Iida & Kohra (1979), Afanas'ev, 
Koval'chuk, Lobanovich, Imamov, Aleksandrov & 
Melkonyan (1981)]. 

Let us find the positions of these peaks for-the 
geometry considered. All three crystals are initially 
placed in such order that all the three vectors of the 
reciprocal lattices KI, K2 and K3 are  paralle! to each 
other. Then, the second crystal is rotated by angle 02 
around axis n perpendicular to the scattering plane. 
Here; for beam ~¢~, falling on the second crystal, the 
exactBragg condition is no longer fulfilled. The beam 
diffracted by the second Crystal will not correspond 
to the exact-Bragg angle for the third crystal either. 
However, this discrepancy can be eliminated by rotat- 
ing the third crystal around the same axis n. The 
corresponding rotation angle can be readily obtained 

21;/" o= _ 21 o1 , 1~'18 
Om = clgh + clg----------~h--[( tibO)2_ Ot]l/2 W cigo O2-- sin 20--------~a (6) 

where 6 = (~h -- (~o. The angular position of the main 
peak on TCD spectra will thus correspond to such a 
rotation of the third crystal. 

The pseudopeak is due to the beams that fall on 
the first crystal at a non-exact Bragg angle and still 
satisfy the exact Bragg condition for diffraction on 
the second crystal. The corresponding rotation angle 
of the third crystal 

Op = 02 (7) 

determines the angular position of the pseudopeak 
on the TCD spectrum. The diffuse peak in this scatter- 
ing geometry is greatly blurred (this point will be 
considered in detail in the next paper). 

The intensity of the main peak under the condition 

l~l>~Ixhl (8) 
can be calculated in terms of the theory of distur- 
bances 

1 f d[2 h 
Im-------~O IFI=~2 (2rr)2, (9) 

where 

F = ( x / 2 ) ~  Xh(z) exp( igz)dz  (10) 

dg'2h = dqgh dOh (1 1) 

q = ~ 2 - ~ - K 2 ,  (12) 

Xh (Z) is the Fourier component of the crystal polariza- 
bility at point r. In the general case Xh(r) varies from 
point to point owing to bulk and surface defects in 

"(a) / (imps-') 

xl ~ 

. ~ ~  [ . ~ 
-45 0 +i5 O~ 

X4 . 

--. ~ 
(c) ~ ~ ~ . ~  

Fig. 2. Experimental TCD spectra at different deviation angles: 
Si (220), Cu Ka radiation, (+n, -n,+n). (a) 02=+45"; (b) 
02 = +75"; (c) 02 = +78". 
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the crystal. In the case of an ideal crystal, when 
Xh(r)----Xh and does not depend on r we can readily 
find the intensity of the main peak: 

]Xh] 2 I 
/F/ ~ ' - -  

4 t~0 ti~ h 3 2 

- 4 4 % [ ( 4 ~ ) 2 - ~ ]  ~/2 [ ( q ~ ) 2 - ~ ] ~ / 2 _ 4 ~  ' • 

(13) 

Here 

P ( a ) =  Im32@h=lXh12/4CI'o (14) 

is constant in an ideal crystal, and it is only due to 
distortions of the crystal structure that this law might 
not be observed. Here the characteristic size of the 
distorted area through depth la, which can alter (14), 
is determined by the value 3 (Afanas'ev, Aleksandrov, 
Imamov, Lomov & Zavyalova, 1983; Yakimov et al., 
1984): 

l a "  1/x3. (15) 

At @h -- @o = 1 ° we obtain ld "" 1 nm. Thus, the pres- 
ent method should be sensitiye to the damage in very 
thin near-surface layers or towards the transition zone 
boundaries. A similar project was undertaken by 
Afanas'ev, Aleksandrov, Imamov, Lomov & 
Zavyalova (1983) and Yakimov et al. (1984), in 
which the dependence of the main peak intensity 
on the deviation angle of the crystal was studied by 
the TCD method in the usual Bragg diffraction 
geometry. A disturbed layer of thickness 1 nm was 
registered. 

The present method, as compared to the conven- 
tional one, has distinctive features. First of all, the 
method is sensitive to the displacements of atoms 
along the surface, while the conventional scheme is 
sensitive to displacements perpendicular to the sur- 
face. In this aspect the two schemes are complemen- 
tary to each other. The advantage of the present 
scheme consists of a much higher intensity of the 
main peak when the same values of 3 are reached. 
In the standard geometry we have an analogous for- 
mula for intensity I~: 

Ixhl 2 1 
I~ = 4 sin 2 0n 32. (16) 

Comparing (16) and (13) one can see that in the 
grazing Bragg-Laue geometry we observe an increase 
in the intensity by a factor of sin 2 0B/@O@h, thus the 
gain in the intensity by a factor of 102 is quite feasible. 

At small angles @o" Ixol'/2 or ~h -" ]Xhl 1/2 (13) does 
not hold, because under these conditions the effect 
of specular reflection should be taken into account. 
When lal>>lXh] '/2 it is easy to obtain the following 

expression for Ira: 

2°° I Im--4~o~------~h 3 2 (~o2+Xo)'/2+~o 

I 2aSh 12 ' 
x (~2h+Xo),/2+4) h 

(17) 

which holds at any angles @o and @h (go is the 
polarizability of the crystal). At 4,0>> 1/~'011/2 we  have: 

p(ol)=tlgh32ImlXh2 I 2t~h I 
=4~o  ( ~ + X o ) ' / 2 + ¢ , .  " (18) 

As is seen from this formula, P(a)  remains a straight 
line except for a narrow region near c~ = a~, where a 
pronounced elevation should appear, which is several 
times larger than the mean value. 

Experimental 

The experimental set up is shown in Fig. 1. Unlike 
the conventional set up for symmetrical Bragg diffrac- 
tion, the surface of the crystal is placed perpendicular 
to monochromator and analyzer crystals, although 
the reflecting planes of all the three crystals, as in the 
conventional set up, are parallel to each other. To 
ensure such a position of the studied crystal a special 
crystal holder, mounted on the goniometer, was pre- 
pared. The goniometer rotation ensured the rotation 
of the studied crystal with an accuracy of up to 0.5". 
The crystal holder makes it possible to rotate the 
crystal in two directions perpendicular to the 
goniometer with an accuracy of up to 1'. By means 
of these two rotations the crystal was oriented in such 
a way that its reflecting planes were parallel to the 
reflecting planes of the monochromator and analyzer 
crystals. 

The investigation was made on perfect Si single 
crystals using Cu Ka  radiation. For monochromator  
and analyzer crystals the ( l l0 )  plane was placed 
parallel to the surface. The specimen was oriented 
with the ( 111 ) plane parallel to the surface, the reflect- 
ing (220) planes making an angle 87.2 (2) ° with the 
surface. The spectra were recorded under the condi- 
tions of the Bragg-Laue grazing diffraction at @o< 
I~'1. 

As is seen from Fig. 2, the typical TCD peaks - 
the main peak and the pseudopeak - are observed 
on the spectra. However, the positions of these peaks 
alter with the change in the direction of the deviation 
angle of the studied crystal. When the crystal deviates 
to the left by an angle a = a~, the main peak disap- 
pears completely, which is in complete agreement 
with theoretical predictions. 

Careful measurements of the position of the main 
peak were made as a function of 02. The results of 
these measurements are shown in Fig. 3(a). The 
experimental data confirm theoretical calculations- 
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the solid curve in Fig. 3 is the calculated position 
obtained using (6). 

The pseudopeak changes its position on the spec- 
trum proportionally to the deviation angle 02. That 
is why at large deviations to the right the pseudopeak 
can go ahead of the main peak. This case is clearly 
shown in Fig. 4. As is seen from this figure, at higher 
02 angles the main peak and the pseudopeak approach 
each other step by step, and, finally, their angular 
positions coincide. The further increase of 02 changes 
the sequence of the peaks on the spectrum. The 
observed curves (Fig. 4) correspor~d to the angle of 
incidence 4o = 1 °. 

At the angle of incidence 4o-~ I~1 the main peak 
and the pseudopeaks do not appear at all on the TCD 
spectra. At positive 02, in this case, only the main 
peak should be evident, whose angular position 0m 
is proportional to 02 ~/2. The corresponding spectra are 
shown in Fig. 5. It is evident from this figure that at 
03 = + 15" there is a small peak, whose position corre- 
sponds to the position of the pseudopeak. This is 
associated with insufficient collimation of the beam 
incident on the crystal. The change of the main peak 
position in the spectrum is shown in Fig. 3(b). 

The theoretical analysis predicts a dependence of 
the main-peak intensity on the deviation angle 02 [see 
(14)] for an ideal crystal. This non-trivial and quite 
unevident dependence was tested experimentally, and 
the results are presented in Fig. 3(c). In accordance 
with the theory, the observed dependence of the value 
P ( a )  on 02 formed a straight line within the whole 
range of angles, with the exception of the region 
a = a~. A sharp peak on the P(a) curve is observed 
in the neighborhood of this point, which is evidence 
of the process of specular reflection of the diffracted 
wave. This fact is in qualitative agreement with theo- 
retical conclusions. 

~,. (b) 

~'" ~ 
0" 

- ~ 0  

O~ (a) • . . , f ~  ' 

0 :  200 " " " 

,1 

/ 50 100 150 200 250 O~ 
, e . / t  , , , ~ I , , , , I. , . , , ' 1  , , I , , , 

Fig. 3. Position of  the main peak  in TCD spectra depending on 
deviation angle 02. (a) ~o = 1°; (b) @o = I~1 = 2.2°- (Solid lines- 
calculated curves.) (c) Experimental dependence of  function 
P(a) on. deviation angle 02. 

Thus, TCD in grazing Bragg-Laue geometry is 
characterized by a number of peculiarities predicted 
theoretically and proved experimentally. 
1. The main peak vanishes altogether on TCD spectra 
for negative angles at the deviation angle t~ = ac. 
2. The position of the main peak on TCD spectra 
corresponds to relation (6). 
3. The intensity of the main peak obeys the law (14). 
4. Function P(a) has a sharp rise near angle ac. 

Finally, it should be noted that the correspondence 
of the experimental curve P(a) to (15) testifies to a 
high perfection of the crystals studied, the thickness 
of the damaged layer being less than 1 nm. 

/ ( imp s -t) 

0==360" 

82 = 320" 

82 = 280" 

o==24o" 

I (imp s- ')  ) 

-15 0 15 "0; 

Fig. 5. E x p e r i m e n t a l  T C D  spec t rum at q~o = I ~ l ;  02 = 15". s i  (220),  
Cu  K a  rad ia t i on ,  ( + n ,  - n ,  + n ) .  

r 

o~ 

Fig. 4. The pseudopeak outrunning the main peak at higher devi- 
ation, angle 02. 

82 = 200" 
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Abstract 

The principle of  maximum entropy, considered as a 
form of statistical inference, is used to obtain an 
estimate of  the electron density function on the basis 
of  partial information. First a maximum-entropy 
probability distribution of maps, which explicitly 
takes into account the available information, is 
obtained, its functional form being a strict con- 
sequence of the type of constraint used. Next the 
electron density function is estimated using this prob- 
ability distribution. For the particular type of con- 
straint considered here the formulation presented is 
shown to correspond exactly to a maximum-entropy 
algorithm using a new form of the configurational 
entropy of  maps. 

I. Introduction 

Entropy maximization methods have been used in 
connection with the problem of image reconstruction 
(Gull & Daniell, 1978). Similar techniques have been 
used by crystallographers to produce electron density 
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maps (Collins, 1982; Wilkins, Varghese & Lehmann, 
1983). The main goal of these methods is to construct 
maps that use all the available information (e.g. 
diffraction data, positivity of the map) while being 
maximally noncommital to any other information. 
Different expressions for the entropy have been used 
(see e.g. Frieden, 1972; Abels, 1974), which were 
associated, sometimes in a non-explicit way, with 
different assumptions. 

In this paper we use a statistical approach and 
information theory to produce a maximum-entropy 
estimate of the electron density function. A 
maximum-entropy probability distribution of maps 
that explicitly takes into account the available infor- 
mation will be obtained starting from first principles. 
The statistical entropy of this probability distribution 
will then be calculated, its functional form being a 
strict consequence of the constraint imposed on the 
sought map. In particular, if the constraints are func- 
tionals of the estimated map, the statistical entropy 
is itself a functional of it and is called the configur- 
ational entropy of the map. For certain types of 
constraints we find the forms used by other authors 
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